- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources1
- Resource Type
-
0000000001000000
- More
- Availability
-
10
- Author / Contributor
- Filter by Author / Creator
-
-
Martin, Steve W. (1)
-
Okkema, Mary (1)
-
Oldham, Nicholas (1)
-
Olson, Madison (1)
-
Wheaton, Jacob (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
& Arnett, N. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Na4P2S7-6xO4.62xN0.92x (NaPSON) glassy solid electrolytes (GSEs) were prepared and tested for their electrochemical properties and processability into thin films. The x = 0.2 composition (NaPSON-2) was found to be highly conducting, non-crystallizable, largely stable against Na-metal and supports symmetric cell cycling up to >100 µA cm-2 without shorting and for these reasons was processed into thin films drawn to 50 m and tested in symmetric and asymmetric cells. Measurements of the sodium ion conductivity using symmetric cells demonstrated that the conductivity of NaPSON-2 was unchanged by film forming. Galvanostatic cycling at 5 A cm-2 of 1.3 mm NaPSON-2 showed stability over 450 hours, while cycling a 50 m thin film showed a very slow growth in the resistance. Cyclic voltammetry and x-ray photoelectron spectroscopy of the NaPSON-2 thin film GSE revealed that it did not react with Na-metal at its surface, but rather in the bulk of the film, showing S, Na2S, and Na3P reaction products. The source of the surface stability was determined to be the preferential segregation of trigonally coordinated nitrogen. These low-cost and easily processed NaPSON GSEs provide a system of materials which could provide for significantly lower cost higher energy density grid-scale batteries.more » « less
An official website of the United States government
